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Introduction

This master thesis work is collocated in the general field of model order re-
duction for numerical simulations, that, explained in few words, is a field
concerning the development of numerical methods aiming to speed up the
computation, paying the price of the introduction of controllable error in the
simulation. More precisely, we work with the reduced basis (RB) techniques,
recognised to be efficient and consolidated methods in the model order re-
duction field. Hence, they are very frequently employed and there is a rich
literature about them very easy to access for those interested. Nevertheless,
in order to have a self-consistent work that should be understood by anyone
with knowledges in numerical analysis and finite element method (FEM), we
start this thesis with a chapter describing from a mathematical point of view
the reduced basis methods. In writing the chapter we consulted the book of
A. Quarteroni [19], since it contains a self-consistent and compact summary
over the reduced basis that perfectly adapts to this thesis matters.

Actually there are cases in which reduced basis techniques lose their efficiency,
that is trying to apply them in the contest of non-linear! parametrized par-
tial differential equations (PDEs). Non-linear PDEs are often necessary in
the simulation of complex physical and industrial process.

To recover the efficiency of the reduced basis methods several approaches
have been proposed during the time but, until know, for what we know, all
of them show drawbacks which compromise their use in some applications.
Chapter 2 explores the state of art of this non-linear reduction techniques, for
which was coined the term hyper-reduction methods, highlighting the issues
in which they stumble. We refer to part of the work presented in [10] for this
chapter.

It is exactly in the topic of hyper-reduction where the core our work lives. In-

'Tt would be better to say "non-affine", continuing the read will be clear the reason of
this statement.



deed we readapt a method, called FOCUSS, proposed in the contest of sparse
signal reconstruction to the contest of Model Order Reduction for non-linear
parametrized PDEs; this new technique is such that overcomes the issues
of the other hyper-reduction approaches. The power and efficiency of the
readapted FOCUSS is accurately tested on three problems, numerically im-
plemented through Matlab. The first problem is built "ad hoc" and we call it
the "polynomial test case”, whose reason would be clear after presenting the
problem. The second and the third are two typical FEM problems involving
non-linear PDEs, one concerning the thermal diffusion, the other the poro-
elasticity. On all these three problems, we measure not only the performances
but also we compare them with some of the other hyper-reduction techniques
results mentioned in Chapter 2.

Chapter 3 is written, at first, to describe the modifications done on the FO-
CUSS’ version of [8] and then to test it on the polynomial problem. Instead
in Chapter 4 we report the results of applying FOCUSS on the two problems
coming from a FEM discretization. In both these last two chapters we also
dedicate some space to topics directly related to our works, such as the use
of the ¢*-norm in the contest of vector sparsification or the construction of
snapshots matrix for the second reduction stage.



Chapter 1

Model Order Reduction: the
Reduced Basis method

The constant increase of available computational power, accompanied by the
progressive improvement of algorithms for solving large linear systems, make
nowadays possible the numerical simulation of complex, multiscale and mul-
tiphysics phenomena by means of high-fidelity (or full-order) approximation
techniques such as the finite element method, finite volumes, finite differ-
ences or spectral methods. However, this might be quite demanding, because
it involves up to O(10° — 10%) degrees of freedom and several hours (or even
days) of CPU time, also on powerful hardware parallel architectures.
High-fidelity approximation techniques can become prohibitive when we ex-
pect them to deal quickly and efficiently with the repetitive solution of partial
differential equations (PDEs). This is, e.g., the case of PDEs depending on
parameters, the so called parametrized PDEs. The nature of the input pa-
rameters depend on which kind of physical model the PDEs refers, e.g., (i)
in nonlinear viscous flows governed by Navier-Stokes equations the Reynolds
number can be varied to study the flow, (i7) the conductivity in the nonlinear
thermal diffusion or (iii) the permeability in a poroelasticity model (which
is, indeed, the benchmark utilized in Chapter 4). In these three cases, evalu-
ating the behaviour of the system by means of a high-fidelity technique, such
as the finite element (FE) method, is computationally expensive because it
entails the solution of very large (nonlinear) algebraic systems, arising from
the discretization of the underpinning PDE.

Concerning this type of problems, reduced-order modelling — alternatively
named model order reduction in the literature — is a generic expression used



to identify any approach aimed to replace the high-fidelity problem by one
featuring a much lower numerical complexity with the introduction of an
error in relation to the high-fidelity solution; this error can be kept below a
prescribed tolerance. Reduced-order model (ROM), given an instance of the
parameter, is able to evaluate the solution at a cost that is independent from
the dimension of the original high-fidelity problem. The ROM techniques
basic idea is the assumption, often verified by reality, that the behaviour of
a complex system can be described by a small number of dominant modes.
In particular, among the reduced-order modelling techniques, a remarkable
instance is represented by reduced basis (RB) methods. The strategy is to re-
solve the high-fidelity problem only for few instances of the input parameters
during an Offline phase computationally onerous, with the aim of building a
set of base solutions (i.e. a reduced base), of a much smaller dimension com-
pared to the number of degree of freedom (Dof) of the high-fidelity problem.
These base functions will correspond to the numerical solutions of the high-
fidelity problem for specific values, appropriately selected, of the parameters.
After that, for every new vector of the input parameters, the corresponding
solution will be searched through an opportune linear combination of the
functions of the reduced base. The unknown coefficients of this combination
will be obtained during the Online phase thanks to the solution of a reduced
problem generated through a Galerkin projection on the reduced space; this
Online stage will only require the solution of a linear system with an associ-
ated small dimension matrix.

It is important to underline that the RB methods do not replay the high-
fidelity methods, but they are built over these. Therefore the reduced solution
does not approximate directly the exact solution of the problem but rather
its high-fidelity approximation.

1.1 Parametrized PDEs

Before introducing the main features of the reduced basis methods, it is use-
ful to set up the theory for the general problem. Let’s indicate with D C RP,
p > 1, a set of input parameters that may describe the physical properties of
the system, boundary condition, source terms, or the geometry of the com-
putational domain. The problems treated by ROM methods can be described
theoretically in the following way:

given p € D, evaluate the variable of interest s(p) = J(u(p)) where u(p) €



V =V(Q) is the solution of the following parametrized PDE

L(p)u(p) = F(p); (1.1)

where Q C RY, d = 1,2,3 stays for a regular domain, V' is an opportune
Hilbert space, V' its dual, L(p) : V' — V' a differential operator of the
second order and F(pu) € V'. The weak formulation of the problem (1.1) is
given by: find u(p) € V =V (Q) such that

a(u(p),v;p) = flo;pu) Yo eV, (1.2)
where the bilinear form is obtained from L(pu),
a(u,v; p) = v (L(p)u,v),, Vu,v eV, (1.3)

while

fosp) = v (F(p)u, v)y (1.4)
is a linear and continuum form. It is assumed that, for every p € D, a(-,-; )
is continuum and coercive, that is 3%, ag > 0:

<5 < +oo, a(p)= inf awuip) (1.5)

a(u,v; p)
v(p) = supsup —————— 5
uev vev |[ully [[vlly weV lully,
The functional J, which associate the unknown quantities of the equations
with the variable of interest, is a linear and continuum form over V. Under
these standard assumptions on a and f, (1.2) admits an unique solution,
thanks to the Lax-Milgram theorem.
Finally another hypothesis is introduced, that is fundamental to ensure the
computational efficiency of a reduced basis method: it is required that the
parametric dependence of the bilinear form a and of the linear form f is
affine in relation to g, which means that the two forms can be expressed as:

a(w,v; p) Z@q Jal(w,v) Yv,w €V, ue D, (1.6)

Z@q )fi(w) YweV, peD, (1.7)

where ©f : D - R, ¢=1,..,Q, and ©% : D = R, ¢ =1,...,Qy, are only
functions of p, while a? : V x V — R, f?9:V — R are respectively bilinear

5



and linear forms independent from . All of these quantities independent
from p will be evaluated Offline, making the Online computation strongly
less expensive.

Although the evaluation of the variable of interest had been one of the reasons
for the development of the RB methods, for the purpose of this thesis it is
enough to focus on the evaluation of the solution u(u); for more details on
the evaluation of the variable of interest it is remained to |18, 23].

1.1.1 A preliminary example

It is useful to introduce a simple example of parametrized problem which
belongs to the case of physical parameters; more complex problems, which
include both physical and geometrical parameters, require a deeper treat-
ment, whose references can be found in [20]. In this example will be shown
how bilinear and linear operator of a parametrized problem can be written
according (1.6) and (1.7).

Let’s consider a process of diffusion, advection and reaction of a substance
inside a domain 2 € R2, on its boundary Dirichlet homogeneous conditions
are imposed for simplicity; the concentration u of this substance satisfies the
following problem

{—v (KVu)+b-Vu+au=f inQ, L9

u=20 in 09,
where:

e K € R?*? is a symmetric and positive definite matrix, which character-
izes the diffusion property of the substance;

e b is a given advection field such that V -b = 0;
e o > (0 1is a positive coefficient of reaction.

For the analysis of this kind of problem it is reminded to Chapter 12 of [19].
In this case we are interested to solve the problem (1.8) for different values of
the diffusion coefficients, of the advection field and of the reaction coefficient.
An example of parametrized coefficients is given by:

(1 O _ [cospus - -
K_(O M2>7 b_<SinM3>7 a = [bg, f_1+lu5

6



which describes a variable diffusion (anisotropic if 1 # ps), an advection
field with constant modulus but different direction (inclined with an angle
of pg respect the horizontal) and, more generally, different regimes where,
depending on the values of the parameters pq, jio € 114, the transport and/or
the reaction can be dominant compared to the diffusion. At the same time,
the variation of the parameter us represents a different contribute of the
source term. Taking for example

M1, p2 € (0057 1)7 M3 € (0,27?), Ha € (07 10)7 M5 € (07 10)

problem (1.8) is well defined for every choice of u € D = (0.01,1)? x (0, 27) x
(0,10)2. A variable of interest can be the average of the concentration over
the domain, given by

Now the problem (1.8) can be re-written according the weak formulation
(1.2) taking V = H}(Q),

ow 0 ow 0
a(w,v; pu) = awavdﬁ 2 a—Za—ZdQ

+ cos( 3 / —UdQ—l—sm (13 / —wdf) —|—/L4/ wod  (1.9)
Q

and

F(o ) = (1+ 1s) / vd2. (1.10)

It can be easily observed that this problem is coercive for every choice of
p € D, since —1/2V - b + a = py4 > 0. In the examined case, a vector of

= b parameters describes the physical properties of interest; both a and
f are affine in relation to p, which means that they satisfy the property of
affine parametric dependence (1.6)-(1.7): indeed in this case Q, = 5, Qf = 1,

Ou(p) = 1, OL(p) = po, O(p) = cos(ps), O4(p) = sin(uz), O)(p) = s,



and

ow Ov ow Ov
1 = [ ——dQ, d* :/——dQ
w0 = [ ZETL0, o) = [ G

(w,v) /—de a4 (w,v) /—de a5(w,v) :/wde,
Q
) = /de
Q

1.2 Main features of a reduced basis method

As previously observed, the term reduced order model for a parametrized PDE
(as (1.2)) stays for any technique that, in function of the examined problem,
aims to reduce the dimension of the algebraic system resulting from the dis-
cretization of the PDE. This can be achieved in two ways: (i) simplifying the
physical model which is expressed by the set of parametrized PDEs, and (i7)
trying to reduce the degrees of freedom of the discrete problem associated
with the equations.

The reduced basis methods (RB) are a particular case of ROM methods, in
which the solution is obtained through a projection of the high-fidelity prob-
lem on a subspace of small dimension; that subspace is generated by a set
of base functions which are typically global and strongly dependent from the
examined problem, rather than in a space generated by a much larger num-
ber of base functions (which can be local, when the problem is treated with
finite element, and global, when treated with spectral methods). According
to this, it is clear that RB methods belong to the second category of reduced
order model techniques since they reduce the degrees of freedom related to
the high-fidelity problem leaving unchanged the physical model.

In this section it will be used the strong form (1.1) of the differential prob-
lem in order to underline the essential components of an RB method; it is
important to remark that the RB method shown here can be built starting
from any numerical discretization technique, and not necessarily from the
ones based on the weak form of the problem.

The aim of a RB method for PDE is to evaluate, in a very efficiently com-
putational way, an approximation of small dimension of the solution of the
PDE. The most common techniques to build a reduced bases space in the
case of parametrized PDE, as the proper orthogonal decomposition (POD)
or the greedy algorithm, allow therefore to determine the reduced solution

8



through a projection on an opportune subspace of small dimension. The main
features of a reduced model can be summarized as follows:

o high-fidelity discretization technique: as previously observed, the aim is
not to replace an high-fidelity discretization technique with a reduced
model.

In the case of problem (1.1), the approximation high-fidelity can be
expressed in the following compact way: given p, evaluate sp(pu) =
f(up(p)) where uy(p) € VN is such that

Li(p)un(p) = Fu(p); (1.11)

VNe € V stays for a finite dimensional space with a big dimension Ny,
Lp(p) an opportune discrete operator and Fj(u) a given known term.
Instead, the weak formulation of the problem is based on the Galerkin
approximation of (1.2): find uy,(p) € V™ such that

alun(p),vn; ) = flop; ) Vo, € VO, (1.12)

e Galerkin Projection: an RB method is based on the selection of a re-
duced basis, obtained from a set of solutions of the high-fidelity problem
{un ()Y, the so called snapshots, and on the evaluation of a reduced
approximation uy(p) expressed through a linear combination of such
base functions, whose coefficients are calculated thanks to a projection
on the space RB

Vy = span{uy,(p'),i =1,..., N}, (1.13)

where N = dim(Vy) < Nj. Therefore the reduced problem can be
expressed as follow: given p € D, evaluate sy(p) = f(uny(p)), where
un(p) € Vi solve

aluy(p),von; ) = f(on; ) Yoy € Vy. (1.14)

Lower is the value of the dimension N, more efficient, in term of com-
putational speed, is the solution of the reduced problem. Note that the
RB solution and the RB variable of interest are only an approximation,
for a given N, of the high fidelity solution u,(p) and of the output
sp(p) (indeed, only indirectly, of u(w) and s(u)).

Naturally, problem (1.14) can be also interpreted in an operatorial form
as

Ly(p)un(p) = Fn(p). (1.15)

9



e Offline/Online procedure: under opportune assumption, the generation
of the database of snapshots can be done Offline only once, and can
be completely separated from every new request of input-output eval-
uation for a new instance of p, which is done in the Online phase.
Obviously the aim of the Online phase is to solve the reduced problem
for values of p € D not selected during the Offline phase. Note that the
computational effort of the Offline phase has to be such that it is well
compensated by the reduction of the problem to evaluate, so that the
entire procedure is efficient from a computational point of view. The
level of efficiency reached strongly depends from the examined problem.

e Frror estimation: it is possible to relate to a RB method with a poste-
riori error estimation Ay (u), accurate and not expensive to evaluate,
in such way that

Huh<u’) - UN(/'I’)HV < AN(“‘) VH € 97 7N = 17 "-7Nma:r; (116)

and in the same way it is possible to derive expressions for the estimator
A% (p) of the error on the variable od interest, such that

sn(p) — sn(p)] < A ().

These estimators can be used not only to verify the accuracy of the
approximation RB, but also to sample the parametric space in an op-
portune way during the phase of the construction of the reduced base.

1.3 The reduced basis method

In this section there are more details about the generation of the reduced
problem, while, in Section 1.5 are described the main strategies used for the
construction of the reduced basis space.
A reduced basis (RB) approximation is typically obtained through a Galerkin
projection (or Petrov-Galerkin if the solutions space and the test functions
space are different) on an N-dimensional space Vjy which has to approximate
the manifold

M, = Uh([.L) e V. TS D (117)

made by the set of the high-fidelity solutions for every value of the input pa-
rameters in the parametric domain D. If the manifold has a small dimension

10



and is enough regular, it is reasonable to assume that each of its points, which
correspond to a solution u,(p) for a value of p € D, is well approximated
by a linear combination of a relative small number of snapshots. Given an
optimal way to select the snapshots, which will be discuss later, it has to be
ensured that is possible:

1. to find a good combination of the selected snapshots to obtain the RB
solution;

2. to represent the RB space through an opportune base;

3. to evaluate the coefficients of the development on the reduced basis in
a extremely efficient way.

The way to overcome each of these problems is shown in the following sec-
tions.

1.3.1 Reduced bases spaces

The most popular way to build a reduced space is the one concerning the use
of solutions "snapshots" of the high-fidelity problem, the spaces generated in
this way are sometimes called RB Lagrangian spaces. References for different
kind of approaches can be find in [17] and [13].
Given a positive integer number N,,.., it is possible to define a succession of
RB spaces VB generic or one contained into the other, with 1 < N < N,40,
such that each Vi#P is an N-dimensional subspace of V™ which means
VEE c VB ¢ VB v, (1.18)

max

To define such succession it is introduced, for a given N € 1,..., Nz, a
sample

Sy ={pt, ... u"} (1.19)
of elements pu™ € D, with 1 < n < N, which can be selected opportunely (see

Section 1.5). For each of these elements is associated the snapshot u,(p") €
VNe Therefore the corresponding RB spaces are given by

V3B = span{u,(pu™), 1 <n < N}. (1.20)

Note that, for construction, the spaces Vi*8 satisfy (1.18) and the sets of
samples (1.19) are one inside the other S; = {u'} C Sy = {u!,pu?*} C--- C

SNma:c'

11



1.3.2 Galerkin projection

The reduced problem is now built thanks to a Galerkin projection: given
€ D, find uy(p) € VB C VN such that

a(un(p),vn; ) = flonsp) Yoy € Vii® (1.21)

and, eventually, evaluate the variable of interest sy(p) = J(un(p)). The
problem (1.21) is the Galerkin-reduced basis (G-RB) approximation of prob-
lem (1.2). Taking (1.12) and subtracting (1.21), one get the property

a(up(p) —un(p),on; ) =0 Yoy € VP (1.22)

which is the Galerkin orthogonality for the reduced problem (see Chapter 4
of [19]).

Let’s consider now the discrete equations associated to the Galerkin approx-
imation (1.21). First of all it is important to choose carefully the base of the
reduced space; indeed a bad choice of the base can lead, even for small di-
mension N, to system strongly ill-conditioned, since the snapshots of (1.20)
become more and more collinear with the increasing of N in the case in
which the space V¥ rises errors which goes rapidly to zero. To avoid an
ill-conditioned reduced system it is generally applied the orthonormalization
technique of Gram-Schmidt to the set of snapshots u,(pu™), 1 < n < Ny
and respect the scalar product (-, )y, in such way to obtain orthonormal base
functions (,,1 < n < Ny, such that (¢, (n)v = dm, 1 < nym < Nyao,
where 0, is the Kronecker delta.

The set {Gy}n=1,.. is chosen as the base of the space VA}?B, for each 1 <
N < N,az- The base functions chosen in this way are not snapshots of the
high-fidelity problem, but they generate the same space:

Vi = span{¢i, ., Gu} = spanfun ('), o un (™)}, (1.23)

Substituting the expression

=> U (1)én (1.24)

in equation (1.21) and choosing as test function vy = (,, the following alge-
braic system is obtained

N
> alGons Gos )uly” (1) = (G ), 1<n <N, (1.25)

m=1
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whose unknows are the RB coefficients ug\?@)(u), 1<m,n<N.

1.3.3 Offline-Online procedure

The system (1.25) is usually a very low dimension one, however it involves
quantities related to the high-fidelity N,-dimensional space, as the base func-
tions (,, 1 < b < N. Using these quantities to assemble the stiffness RB ma-
trix for each value of p leaves the cost of the single evaluation input-output
p — sy(p) too high. The problem is overcome thanks to the previous as-
sumption of parametric affine dependence. For the sake of simplicity, f is
considered not to depend on the parameter u.

Thanks to (1.6), the system (1.25) can be expressed as follow,

Qa
(Z @zmmﬁv) (i) = v, (1.26)

where (uN(p’>>m = uxfn)(ll’)v (A?\/)mn = Cﬂ((m(ﬂl)a (fN>n = f(én)7 for 1 <
m,n < N. Therefore the computation requires an expensive Offline phase,
p-independent, to execute only once, and an Online phase extremely efficient,
to run for each selected value of u € D:

e in the Offline phase, first, the snapshots wu,(pu™) are computed, then
the base functions (,, through Gram-Schmidt orthonormalization, 1 <
n < Npaz; after this there is the assembly and memorization of the
structures

f(Gn), 1< n < Noaa, (1.27)
a(Cny Gm)y 1 <n,m < Nipgg, 1< < Q. (1.28)

Therefore the cost of the Offline operations depends on N,,4., @4, and
Np;

e in the Online phase, the structure defined in (1.28) are used to form

Qa
> 0 (1)at(Cor Cm). 1< mym < N; (1.29)
q=1

and the resulting linear system N x N (1.26) is solved to compute
the weights u%n)(u), 1 < m < N. Therefore, the cost of the Online
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operations is O(Q,N?) concerning the evaluation of the sum (1.29);
O(N?) for the solution of the system (1.26), note that the RB matrix
obtained are full. The storage cost of the structures, which are necessary
during the Online phase is O(Q,N2,,,)+O(Nyq.) operations, thanks to
condition (1.18): for every given value of of N, it is possible to extract
the RB matrix of dimensions N X N as the main under-matrix of the
correspondent matrix of dimensions N,,uz: X Npaz-

The Online cost to evaluate uy(p) (and, it can be easily seen, also to evaluate
the variable of interest sy(u)) results independent form Ny, implying two
consequences: first, if the dimension N is small, the output will be very fast;
second, N} can be chosen relatively big to make the error ||u(p) — un(p)lly,
enough small, without influencing the Online cost.

1.4 Algebraic and geometric interpretation of
the RB problem

To better understand the RB method is useful to clarify which relation-
ships exist between the Galerkin-reduced basis (G-RB) approximation and
the Galerkin-high-fidelity (1.12) approximation from both an algebraic and
geometric point of view. More information can be found in [20].

Let’s indicate with u, () € R and uy(u) € RY the vectors of the de-
grees of freedom associated to the functions uy,(p) € V™ and uy(p) € VEB,
respectively, which are given by

w(p) = (u (p), o up™ (), un(p) = (uly (R, sl ()T

With {¢"} ", the Lagrangian nodal base of V™ is indicated, therefore ¢"(x,) =
0,5, and {w, }*, indicates a set of weights such that 32" w, = |Q| and
{x, 7{\721 represents the set of discretization nodes, r, s = 1, ..., N,'. Such base

results to be orthogonal in relation to the discrete scalar product

Np

(up, vp)p = Z Wty (X, ) Up (X))

r=1

INote that the set of discretization nodes is usually not equal but proportional to N},
since it depends from how many quadrature nodes are considered in each single element
of the mesh.
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It is useful to normalize the base functions defining

1 ~r T S
o" = Q" (", 0 = s, r,s=1,..,Np. (1.30)

NS

Thanks to the orthonormality of the base functions, the following relations

ol = (vn, "), for 7 =1, ..., Nj, hold.

1.4.1 Algebraic interpretation of the problem

First, it is highlighted the algebraic connection between the problem (G-RB)
(1.21) and Galerkin-high-fidelity (1.12), which has important consequences
on the computational aspects connected with a RB method.

In matrix form, the problem (G-RB) (1.25) can be written as

An(p)uy(p) = fy, (1.31)

where £y = (i, S8 X = F(G)s (An(1)km = G Gei 1), with
k,m =1,...,N. On the other side, the Galerkin-high-fidelity problem (1.12)
in matrix form is given by

An(p)un(p) = i, (1.32)

with f), = ( }(Ll), . }(LN))T, being f}(f) = f(p,) if the integral is exactly eval-
uated, or f,(f) = (f,¢")n if the integral is computed through a quadrature
formula, while (A, (p)).s = a(@®,¢"; p), for r,s = 1,..., N. For simplicity,
the dependence on p can be avoid by now.

Let’s define V € R¥»*N the transformation matriz, whose components are
given by

(V)rk: (Ck,(pr)h, r = 1,...,Nh s k’: 1,...,N. (133)
Thanks to this definition, it is possible to prove these identities:
fy = VIf,, Ay =VTALV, (1.34)
indeed
Ny, Np,
(VTAhV)km = Z (V)Zr (An)rs(V)sm = Z (Ch, @ )nal(0®, ©")(Cms ©°)n
r,s=1 rs=1
Nh Nh
=a (Z(C’m? @S)hgps’ Z(Cka QDT)hSO’I‘) = a(Cmu Ck) - (AN)km
s=1 r=1
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and, in the same way,

(V) B => (V)5 (8)7 = (G e nf (")
=/ <ZL(C1€,SDT)WT> = f(Gk) = (En)- (1.35)

Using (1.34), every matrix coming from the discretization and affine decom-
position of the problem, which is independent from p given by A%, can be
assembled only once in the Offline phase after the high-fidelity matrix A} has
been evaluated.

The vectorial representation of the error between the solution of the problem
(G-RB) and the Galerkin-high-fidelity approximation is

e, = u, — Vuy. (1.36)

Likewise, the vectorial representation of the residual of the high-fidelity prob-
lem, evaluated on the (G-RB) solution, is

rh(uN) = fh - AhVuN. (137)

The following lemma gives the main algebraic connection between the (G-
RB) problem and the Galerkin-high-fidelity approximation:

Lemma 1.1 The following algebraic relations hold:

Aheh = I‘h(llN), (138)
VAL, = fy, (1.39)
VPry(uy) =0, (1.40)

where e, and rp(uy) are defined by (1.36) and (1.37), respectively.

Proof. Equation (1.38) comes directly from (1.36) and (1.32).

Multiplying from the left (1.32) for VT, (1.39) is obtained, thanks to (1.34).
Finally, (1.40) comes from (1.37) using the identities in (1.34) and the prob-
lem (1.31). O
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1.4.2 Geometric interpretation of the problem (G-RB)

To characterize geometrically the solution uy of the problem (G-RB) as
well as the error (1.36), it can be used the fact that the base matrix V
defined by (1.33) identifies an orthogonal projection on the subspace Vy =
span{vy, ..., vy } of RVt generated by the columns of V. Note that dim(Vy) =
N since the columns of V are linearly independent. With the assumption
that the base functions {(x}r=1.. n are orthonormal in relation to the scalar
product (-, ), which means

.....

Np,
(Chr Gm) = Y w03Gk()Gn () = G, (1.41)
7j=1
follows that
VIV e RVY vV =1y (1.42)

where Iy stays for the identity matrix of dimension N.
Lemma 1.2 The following statements hold:

1. the matriz II = VVT € RN»*Nu s projection matriz from RN on the
subspace V ;

2. the matriz Iy, — IT = Iy, — VV' € R¥*No 45 q projection matriz
from RNw on the subspace Vi, being this last one the subspace of RN
orthogonal to 'V y;

3. the residual v,(uy) satisfies
Hrh(uN) = 0, (143)
which means that rj,(uy) belongs to the orthogonal space (Vy)*t.

Proof. The first property is a direct consequence of the orthonormal property
(1.42): indeed
Vwy € Vy dvy ERN | wy = Vvy.

Therefore, Vv, € RVr, Ywy € Vi,
(Mvy, wi)e = (TIvy,, Vvy)e = (Vv VIV )y = (v, Vv ) = (Vi Wy )2

Second statement directly comes from the first, while (1.43) from (1.40). [
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Thanks to the supposition of an orthonormal base, the error e, = u; —
Vuy can be decomposed in the sum of two orthogonal terms:

€ep = uy — VU.N = (llh — Huh) + (Huh — VUN)
= (HN;L - H)uh + V(VTU}L - llN) = evﬁ + evy- (144)

The first term, orthogonal to Vy, takes into account that the high-fidelity
solution does not necessary belong to the subspace Vy, while the second
one, which stays in V, relays to the fact that a different problem from the
original one is resolved. Indeed the following result holds

Proposition 1.1 The high-fidelity representation of uy € RY, defined by
u,(p) = Vuy(p) € RM | solves the "equivalent" high-fidelity problem

VVTA, () VYV w, = VYT, (). (1.45)

The matriz VVT A, (p)VVT has rank equal to N and its pseudo-inverse of
Moore-Penrose s given by

(VVT AL () V)T = VAT () V7. (1.46)

1.5 Construction of the reduced spaces

In this section, two techniques to sample the parametric space and to eval-
uate the snapshots necessary to build the reduced base are presented. Both
techniques are later used in the problems treated in this master thesis work.
The first technique presented is the greedy algorithm origninally introduced
in [18, 22]. It is based on the idea to select, at each step, the element repre-
senting a local optimal in relation to an opportune indicator of the error. The
second method is the so called proper orthogonalized decomposition (POD).
This technique was created with the aim to speed up the solution of time-
dependent problems and only later has been extended to parametric problems
(in the first applications the time was considered as the only parameter).

1.5.1 Greedy algorithm

From an abstract point of view, a greedy algorithm is a general procedure
which allows to approximate each element of a compact set K of an Hilbert
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space V through a subspace of K with a given dimension N > 1, this sub-
space has to be built choosing opportunely some elements of K. Basically
the idea is to search elements {z1,...,xy} in K such that every z € K is well
approximated by elements of the subspace Ky = span{z1,...,zx}.

In the case of construction of the reduced base K = M, where M, is the
manifold of the solutions defined in (1.17) and the greedy algorithm has the
following form:

pu = argmax [[un () |y ;

: 1 N-1
given (-, ..., 4

set Vy_1 = span{uh( Y, (N H ) (1.47)

LU
evaluate u” = arg maxd(uh( ), Vvo1);

iterate until arg max d(un(p), V) < €tor-
e

e, 1s a fixed tolerance, while d(up (), Vy—1) indicates the distance between
up(p) and the subspace Vy_1; it is given by

d(un(p), Vv-1) = |[un(pe) = vy un(p)|), (1.48)

which means that in the step Nth the selected snapshot uy (u') is the element
of the manifold which is worst approximated by its orthogonal projection on
Vy_1. The elements of the set {uy(u'), ..., un (™)}, generated thanks to the
greedy algorithm, are then orthonormalized in relation to the scalar product
(+,)v, giving therefore an orthonormal base {1, ..., (v} of Vi.

However, if it is performed with this descriptions, the greedy algorithm (1.47)
would still be impracticable from a computational point of view: indeed, in
each step the selection of the optimal snapshot would require the solution of
an optimization problem, in which the evaluation of arg max,en d(un(p), Va—1)
requires the evaluation of the high-fidelity solution wuy(p) for every pu € D,
leading to an excessive high cost.

In the practice, this cost is strongly reduced substituting the search of a
maximum over D with the maximum over a very large sample Z..i;n C D,
of cardinality |Z¢ain| = Ntrain, Which is necessary to select the reduced space
or to train the RB approximation. Nevertheless, the solution of many high-
fidelity problems (nain problems) is still required.

Another simplification consists on substituting the approximation error with
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a posteriori estimator of the error Ay_; () such that,

Jun(p) — un(p)lly < An(p) YpeD (1.49)

and which is easy to evaluate. The RB-greedy algorithm has then the follow-
ing pseudo-code:

Si=p';
evaluate u,(p');
Vi = span{us(p') };

for N =2, ...
p" = arg max Ay_i(p);
HEZ¢rain
EN-1 = AN—l(HN);
if eyo1 <eiy
Nz = N — 15
end;
evaluate uy,(u);
Sy =58y-1U {.UN}§
Vi = V1 Uspan{u,(u™)};
end.

Basically at the Nth iteration of the algorithm, among all the possible can-
didates up(p), p € Zirain, the element, whose posteriori estimation (1.49)
indicates to be the worst approximated by the solution of the RB problem
associated to the space Vy_1, is added to the set of the already selected
snapshots.

1.5.2 Proper Orthogonal Decomposition (POD)

An alternative technique to the greedy algorithm for the construction of the
reduced spaces in the case of parametrized problems is the proper orthogonal
decomposition (POD). This technique reduces the dimensionality of a sys-
tem transforming the starting variables into a new set of variables unrelated
between them (called modes POD, or principal component), such that the
first modes describe well a good portion of the energy carried by the original
variables.
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From an algebraical point of view, the POD technique is based on the use of
the singular values decomposition (SVD), whose modality of application is
going to be clarified now.

Considering a set of 1, vectors snapshots {uy, ..., u,,,... } belonging to R,
the snapshots matrix U € RV»*7rain

U = [ul u2 untrain]7

With Train = |Ztrain| <€ Np, can be formed. Clearly it is true that

g e Uy

Np
;= (uf, ™) e RVl = (s ) un(as pd) = D ul e (%),
r=1

(1.50)
The decomposition in singular values of U is given by

Tovy (2 0
VUZ-(O NE

where V.= [¢; & ... Cn,) € RYWNvand Z = [y Py ... n,...] €
R7rainXmain - gre orthogonal matrices and ¥ = diag(oy,...,0,), being o1 >
o9 > ... > 0,. The integer r < ny.,i, indicates the rank of U, which results
strictly less than ny..;, if the snapshots are linearly dependent. It can be
written

U'I,bz = UiCi and UTcl = O'Z"I,bi, 1= 1, T

or, equivalently,

UTUy; = o24p; and UUTC = 02¢, i=1,...,7; (1.51)

2

79

therefore o
C =U"T,

© =1, ...,r are the not zero eigenvalues of the correlation matriz

Ci; = u?uj, 1 <4, j < Nrain,
listed in ascending order. For every N < Nipain, the POD base of dimension
N is defined as the set of the first N left singular vector (i, ...,{ny of U or,
alternatively, as the set of vectors

G = p Uyp;, 1<j<N (1.52)

obtained from the first NV eigenvectors ), ..., ¥y of the correlation matrix

C.
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For construction, the POD base is orthonormal. Furthermore, if {z;,...,zx}
indicates an arbitrary set of N orthonormal vectors in R and I, w is the
projection of the vector w € RM on Zy = span{z, ..., zy}, which means

N
zu= Z 7y (W)z,, with % (u) =u’z,,
n=1

the POD base (1.52) generated by the set of snapshots uy,...,u,,,, can be
characterized as the solution of the following minimum problem:

min{F(zy, ..., zy), z; € RM, zl'z; = §,; V1 <i,j < N}
(1.53)

2

With E‘(Z]_7 ceey ZN) = Z?;rlain 2

u; — HZNUZ'

Basically the POD base minimize, among all the possible sets of N or-
thonormal vectors {zy,...,zy} in R the sum of the square of the errors
E(zy,...,zy) between every snapshots u; and its projection Iz, u; on the
subspace Zy. The quantity E(z,...,zy) is often called as POD energy.
The POD technique construction just presented is based on the so called
snapshots method, introduced by Sirovich [27]. It is also possible to prove
that

.,
E(Cinlh) = ) ot (1.54)
i=N+1
which expresses the fact that the error made by the POD base of dimension
N in the approximation of the set of snapshots is equal to the sum of the
square of the singular values corresponding at the » — N modes not selected
for the construction of the base. Therefore, it is possible to define N,,,, in
such a way that E(Ci,...,¢n) < €, where €, is a given tolerance. To do
this, is enough to choose N« as the smallest value of N such that

I(N):Zaf/iaf >1-9, (1.55)

1=

which means that the energy carried by the last » — Ny, modes is equal to
0 > 0, where § can be chosen as small as wanted. The key feature of this
procedure is that, even if § is usually a very small value (typically § = 1077
with f = 3,4, ...,), in many cases Np.x is relatively small (very lower than
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r).

To conclude note that, in a lot of applications, the POD approach for the
construction of the reduced space can result more expensive, from a com-
putational point of view, than the greedy algorithm. Indeed, this last one
requires only to evaluate N, typically few, solutions of the high-fidelity prob-
lem, while the POD requires the evaluation of 7n,,in, possibly many, solutions
high-fidelity to determine the snapshots matrix, in addition to the solution
of an eigenvalue problem for the correlation matrix C € RM>*N» Neverthe-
less, the POD results a more general technique, it is applicable also to those
problems where is not possible to derive a posteriori estimation of the error
that is essential for the effectiveness of a greedy algorithm. Moreover, (1.55)
provides an useful information about the content of energy neglected by the
selected POD modes to build the reduced base, which is an indication, in
L?-norm rather than V-norm, of the approximation error.
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Chapter 2

Non-affine model order reduction
via hyper-reduction

In the previous chapter the focus has been pointed on the reduced basis
method, which is the most popular approach for Galerkin projection based
Model Order Reduction. In order to take advantage of the speeding in compu-
tational time due to the projection of our problem on a subspace of dimension
N strongly lower compared the one N, of the high-fidelity problem, a funda-
mental hypothesis has been made: the parametric dependence of the bilinear
form and of the linear form, coming from the weak formulation, has to be
affine in relation to p, allowing to write them as in (1.6) and (1.7). This is a
very restrictive hypothesis. Indeed, if we want to build models that are truly
representative of the physical phenomena, it is necessary, most of times, to
introduce a dependence of the parameters of our models from some quanti-
ties related to the variables of the problem.

For example, in (1.8) we could have that the diffusivity coefficients p; and
1o are directly dependent from u and in this case it is clear that the affine
decomposition (1.6) is not possible since we cannot extract any more the
dependence from the parameters of the bilinear form a(w, v; u) and put it in
the scalar functions O ().

What we loose without the assumption of affine dependence of the equations
from the parameters is the possibility to pre-compute Offline the reduced op-
erators A%, and therefore to write our problem in the form (1.26) for which
the solution has a computational cost which depends on N instead of N}, as
the original discretized equations.

To fix this problem, the most popular techniques involve the use of a second
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reduction stage. As the first reduction stage works directly on the high-fidelity
approximation simplifying its computation, the second reduction stage works
on the first reduction stage approximation, speeding its evaluation always
trough an opportune "simplification" of the reduced problem. Since the sec-
ond reduction stage is a simplification of an already simplified discretization,
the error it introduces in relation to the high fidelity approximation, directly
sums with the one of the first reduction stage.

Compared to the first reduction stage, for which there are methods (e.g.
reduced basis) whose use is considered standard since they works well for
large part of the problems, the second stage of dimensionality reduction, for
which [24] coined the term hyper-reduction, is far more challenging and is
nowadays a topic of discussion in the model reduction community. In the
following, is reported the classification of hyper-reduction methods made in
[10], we prefer to write directly here the classification instead to only remind
to the quotation, because having in mind which are the different techniques
developed to treat the second stage of reduction is a crucial passage to fully
understand the contribution of this work.

2.1 Classification of "hyper-reduction" meth-
ods

Let F* € R denote the full-order term carrying a general, nonaffine rela-
tionship with both the input variable and the state variable, e.g. something
coming from a finite element discretization like

F" = A"(p(u)u,

with A"(p(u)) € R¥»>*M and u € R™. The corresponding projection onto
the reduced order space will be represented by F € R™ (m < N,), the
connection between these two variables being the matrix of basis vector ® €
RN >m (F = ®TF"). The approaches to treat with the approximation of F”
can be broadly classified as nodal vector approaches and integral approaches.

2.1.1 Nodal vector approximation approaches

In this type of approaches, the approximation is given by replacing the finite
element vector F* by a low-dimensional interpolant F* ~ RpF?, with Rg €
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RN»*™ interpolation matrix, and F? the entries of F" corresponding to the
degrees of freedom (z C {1, 2, ..., N,}) at which the interpolation takes place.
The interpolation matrix is obtained following the procedure of computing
a basis matrix for F" and then determining, through an offline phase, a
set of indices so that the error is minimized over a set of representative
snapshots of F". Some of the most famous methods which belong to this
category are: the Empirical Interpolation Method (EIM) [4], the Discrete
Empirical Interpolation Method (DEIM) [7], the Best Point Interpolation
Method (BPIM) [15] and the Missing Point Estimation Method |[3].

2.1.2 Integral approximation approaches

In a finite element context, F can be regarded, not only as a projection of a
large vector into a reduced-order space (F = ®TF"), but also as the result
of integrating over the concerned domain Q € R? with d = 2 or 3, the
corresponding reduced-order variable f = ®Tf" (fh . Q — RM) ie.:

Fz@T/fh dQ:/fdQ. (2.1)
Q Q

Knowing this, the problem can be now viewed as the approximation of an
integral, rather than the approximation of a vector. There are two possible
ways to treat integral approximation: (1) looking for a low-dimensional ap-
proximation of the integrand or (2) approximating the integral itself as a
weighted sum of the integrand evaluated at optimal sampling points.

1. Interpolation of the integrand. These methods follow, basically, the
same procedure described for vector approximation approaches with
the important difference that now the interpolant is not built for the
integral but directly for the integrand; which means that if we make
f(x) = ) e, Ry(x)f(xy), where Ry (g € z) stands for the interpolation
functions, then we can write

Qg
F = /QfdQ ~ g%: (/ﬂ Rng) f(x,) = g%: Q,f(x,). (2.2)

Hence, the integral can be approximated as a sum of the product of ma-
trix weights Q, (which can be computed Offline once the interpolation
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base has been decided) and the integrand evaluated at the interpolating
points x, € z which have to be chosen among the Gauss points of the
underlying finite element mesh. Example of this approach is presented
in [9] or [11].

. Cubature methods. The last approach to be discussed relays to the cu-
bature methods. The integral is approximated as a finite sum of positive
scalar weights {w,}7L, times the integrand evaluated at appropriately
chosen sampling points:

F ) wf(x,). (2.3)

The first scheme of this type was proposed by An. et al. (2009) [26]; this
strategy consists on determining, among the integration points of the
FE mesh, a reduced set of points and associated positive weights so that
the integration error is minimized over a set of representative samples
of the integrand. The motivation behind constraining the weights to be
positive scalars, is that, in doing so, the contribution to the Jacobian
matrix due to the nonlinear term, inherits the spectral properties of
its full-order counterpart. For example, in a structural problem, if the
FE stiffness matrix is symmetric and positive definite, one would wish
to have these properties also in reduced-order counterpart. Note that
this desirable attribute is not enjoyed by the other two approaches
presented previously. Indeed, interpolatory schemes ruin the symmetry
and, depending on the location of the sampling points, may also destroy
the positive definiteness of finite element stiffness matrices [11, 2]. As a
consequence, such schemes tend to be less robust than the finite element
models they intend to approximate.

All the cubature methods search for a sparse representation of the
vector containing the integration points of the FE mesh and of the
associated weights has to be find. The word sparse means that if the
number of integration points of the FE mesh is O(Ny,), then the number
of points m for the reduced quadrature rule has to be such that m <«
N},. This sparsity should be introduced explicitly, for example through a
heuristic sequential point selection process [10] or with an approximate
(° optimization [6]; in both cases, the main problem is that they remind
to the solution of non-negative least-square problems which can be
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computationally expensive. Another way to obtain sparse vectors was
proposed by Ryu and Boyd in [25] and it consists in replacing the ¢°-
norm with the use of the £!-norm; this norm naturally yields quadrature
rules that are sparse and furthermore the offline problem can be cast as
a linear program (LP) efficiently treated by the SIMPLEX algorithm
[25, 16, 30] or it can be cast with the LASSO algorithm [29]. We believe
that the sparsification thorough ¢!-norm, although demonstrated to
work for some test problems in the papers above mentioned, has an
intrinsic problem with the objective it wants to reach which limits its
efficiency.

In Chapter 3 we clarify the motivation of the precedent statement as
well as the reasons for why ¢*-norm provides naturally sparse vector
solutions in many other contests of application are explained.
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Chapter 3

Hyper-reduction through the
FOCUSS algorithm

This chapter is the core of our work, indeed here we present FOCUSS, which
is an algorithm originally introduced by Irina F. Gorodnitsky and Bhaskar
D. Rao [8] for the sparse signal reconstruction and that we had the intuition
to adapt as a cubature method for the hyper-reduction. We present some
modifications made to their version of FOCUSS algorithm in order to ensure
the positiveness of the weights and to overcome some numerical problems.
Through the simple example of the polynomial problem, we show how to use
this algorithm to get sparse quadrature rules and its efficiency respect the
¢'-norm minimization algorithm LASSO. We also compare this method with
the heuristic approach of [10], the nodal vector interpolation method EIM
|4] and the dual SIMPLEX algorithm used in |25, 16, 30]; the result of this
comparison evidences the fact that the FOCUSS algorithm is the only one
able to recover the Gauss-Legendre quadrature rule, which, for a given family
of polynomial functions of degree n, is the more sparse quadrature rule able
to exact integrate the family of functions.

Before proceeding with the introduction of FOCUSS and the explanation of
how it works, the problem of finding a sparse quadrature rule is introduced
from a generic point of view. Furthermore, we dedicate the second section to
highlight why the ¢'-norm minimization is usually involved in the contest of
vector sparsification.
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3.1 From the evaluation of integrals to the so-
lution of undetermined linear system

Let’s take a family of scalar functions F with finite cardinality |F| = m
defined over 2 C RV with Q open, limited and connected; we demand that
each element f; of ¥ is at least integrable over €2, therefore we require f; €
L>(Q) for i = 1,..,m since we deal with a bounded domain.

Suppose we want evaluate

/in dQ  Vi=1,..,m; (3.1)

as a first idea we can use an high accuracy quadrature formula involving n
points with n >> m,

Q j=1

For our propose we can consider the values gotten with (3.2) as the exact
values of (3.1) and we can collect them in a vector b € R™, while the values
fi(x;) and w; are collected respectively in a matrix A € R™*" and in a vector
w € R, therefore we can rewrite expression (3.2) as the algebraical equation

Aw =b. (3.3)

If we imagine not having the vector of weights w, we can look at (3.3) as a
linear system

Ax = b, (3.4)

where A is the coefficients matrix of the linear system, x the vector con-
taining the unknowns and b the vector of known terms. The system (3.4)
is underdetermined since m << n and therefore it admits oo™ 7 solutions
where ¢ < m is the rank of the matrix A. Obviously w is a solution of (3.4)
but now we can look for solutions of the system which are "sparse", that is,
solutions where the number of non zero entries is less or equal m. We also
wish that each non zero entry of x is positive, the need of this constrain
has been clarified in the previous chapter when we have spoken about the
cubature methods.

In order to get a sparse solution of the system with positive non zero entries,
we propose the use of the algorithm FOCUSS, the general idea under this
algorithm and all the improvements made to adapt it to our necessities are
reported in Section 3.3.
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3.2 Sparse solution through /!-norm minimiza-
tion

The most natural way to require that a vector x € R” is sparse, which means
that the number of non-zero entries m has to be such that m < n, is to ask
that its °-norm is minimum. With ¢°-norm we mean the norm that counts
the number of non-zero elements of a vector; note that we should avoid to
state ° as a norm since it does not satisfy the property ||ax|,o = |- [|x]| -
Unfortunately, it is quite complicated and there are not efficient algorithms
to express the minimization of an objective vectorial function through the
(°-norm.

The most popular way to overcome the algorithmic implementation issues of
the (%-norm is to replace it with the /!-norm which has already been men-
tioned in Chapter 2 and allows to cast efficiently the problem as a linear
programming one. It is now necessary to give the idea of why ¢*-norm suc-
ceeds also in providing sparse vectors.

If we limit ourselves to only look at the minimization of the ¢*-norm of a
vector, it is absolutely not clear the reason why this should give us a sparse
representation of the vector. What we should do is to look to an undeter-
mined system as (3.4) and the ('-norm penalty as a whole. To clarify the
meaning of this expression, let’s take a concrete example.

Suppose we want to find a line that matches a set of points in 2D space. We

Figure 3.1: Shape of the ¢! ball.
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know that at least 2 points are needed to fix a line. In the case the training
data has only one point, we have infinite solutions: every line that passes
through the point is a solution. Suppose the point is at [10, 5]; a line is
defined as a function y = ax + b. Then the problem is to find a solution to

this equation:
0 11 () =)

therefore all the points of the line b = 5 — 10a are possible solutions.

Now if we draw all points that have a ¢*-norm equals to a constant c, they
form the shape of Figure 3.1. The shape looks like a tilted square, in high
dimension space it would be an octahedron. Notice that on this red shape
not all points are sparse, only on the tips the points are sparse. Now the way
to find a sparse solution is enlarging this red shape from the origin by giving
an ever-growing ¢ to "touch" the line. The key intuition is that the touch
point is most likely at a tip of the shape. Since the tip is a sparse point, the
solution defined by the touch point is also a sparse solution. As an example,
in the graph of Figure 3.2, the red shape grows 3 times until it touches the
blue line b = 5 — 10a. The touch point [0.5, 0], as it can be seen, is at a tip of
the red shape and is a sparse vector. Therefore we say, by finding the solution
point with the smallest ¢!-norm, (0.5), out of all possible solutions (points
on the blue line), we find a sparse solution [0.5, 0] for our problem. At the

YA
\,
kY

IR

Figure 3.2: Touched point.
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Figure 3.3: No sparse recovery case.

touch point, the constant c is the smallest ¢!-norm you could find within all
possible solutions.

The intuition of using ¢'-norm is that the shape formed by all points whose
(*-norm equals to a constant ¢ has many tips (spikes) that happen to be
sparse (lays on one of the axes of the coordinate system). Now if we grow
this shape to touch the solutions we find for our problem (usually a surface
or a cross-section in high dimension), the probability that the touch point of
the 2 shapes is at one of the “tips” or “spikes” of the ¢!-norm shape is very
high. This is why ¢'-norm minimization of an objective function, under linear
constrain such us (3.4), works in recovering sparse vectors.

Unfortunately, /!-norm does not always touch the solution at a tip. Indeed,
suppose we still want to find a line out of 2D points, but this time, the only
training data is a point [1, 1000]. In this case, the solution line b = 1000 — a
is in parallel to one of the edges of the /!-norm shape as shown by Figure 3.3.
Eventually, they touch on an edge, not by a tip. Not only we cannot have a
unique solution this time, but most of the regularized solutions are still not
sparse.

But again, the probability of touching a tip is very high. And this is even more
correct for high dimension, real-world problems. Indeed, when the coordinate
system has more axes, the /!-norm shape has more tips.

Now the question becomes: is the ¢!-norm the best kind of norm to find a
sparse solution? We have already said that the best option would be to use
directly the (°-norm but then we should face other problems. By the way,
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Figure 3.4: Shape of the 3D ball for different norms.

there is still a class of norms which can be considered; it turns out that
the P-norm with 0 < p < 1 gives the best result. This can be explained
by looking at the shapes of different norms in Figure 3.4. When p < 1, the
shape is more “scary”, with more sharpen, outbreaking spikes. Whereas when
p = 2, the shape becomes a smooth, non-threatening ball. Unfortunately,
the direct use of the ¢P-norm to minimize the objective function has the
same implementation complications of °. Nevertheless, something can still
be done with an “indirect” /P-norm minimization approach and indeed, this
is the content of the next section.

3.3 FOCUSS

When we are in front of a system like (3.4) we know that the solution is not
unique, but if we ask for the minimum norm solution x,,,, that is the one
minimizing the ?-norm, the following proposition provides a way to express
it uniquely.

Proposition 3.1 One particular solution of the undetermined system (3.4),
assuming A full rank so that AAT is invertible, is

. =A"b, (3.5)

where AT = AT(AAT)™! denotes the Moore-Penrose inverse® [5|. This so-
lution is the one that minimizes ||X||,2, i.e. Xmy is the solution of the opti-
mization problem:

min x|,z

subject to Ax = b. (3.6)

!Note that the Moore-Penrose inverse is more generally defined as Af (AAH)~1 In
this contest, since there are no complex quantities involved, it is enough to consider the
transport matrix.
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Figure 3.5: Shapes of the 1D polynomial functions z” and of the unit balls
when making use of the ||-||,,-norms.

Proof. Substituting (3.5) in (3.4) it is clear that x,,, is a solution of the
system. Now suppose Ax = b, therefore A(x — x,,,) = 0 and

(X — Xpmn)  Xon = (X — X ) TAT(AAT) D
(A(x — %)) (AAT) b
0

e, (X —Xmn) L Xmn, SO
HXH?? = |Ix + X — le”?2 = ||leH?2 + [|x — an”?? > ||anH?2 )

which means that x,,, has the smallest ¢?>-norm among all the solutions of
(3.4). n

Unfortunately, the minimum norm solution does not provide a sparse solu-
tion. Rather, it has the tendency to spread the energy among a large number
of entries of x instead of putting all the energy into just a few entries; nev-
ertheless, it is the starting point to understand the idea under FOCUSS.
Suppose that instead the ¢2-norm we search for a solution which minimize
the (P-norm with 0 < p < 1, for this kind of solution the entries x; which
are very small (z; < 1) are strongly penalized since the elevation to a power
less than 1 gives to them a greater contribution to the norm that has to be
minimized compared the elevation to power 2 as in the /2.-norm, see Figure
3.5. Unfortunately, there is not a simple expression as (3.5) to find the mini-
mum ¢P-norm solution since /7 is not an Hilbert spaces if p # 2; nevertheless,
something can be done replacing the minimization of ||x||,2 with the mini-
mization of the weighted norm |[W~1x]|,2, where W is a square invertible
matrix. The solution minimizing this norm is given by

x = W((AW)")b. (3.7)

In FOCUSS W is chosen properly in order to obtain something approximat-
ing, implicitly, the minimization of an ¢P-norm. It is an iterative algorithm
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Algorithm 1 FOCUSS
Input: A, b, z¢, p, maximum iteration I, tolerance for convergence tol
Output: z
1: for k=1to I do
2. W = diag(a}_,)
3 AWWATy =b =y (Solve)
4 T = WWATy
5 e=|lzk — zpll / |kl
6
7
8
9:

if e < tol then
break
. end if
end for

which starts from a given initial solution x; and at each step k& the matrix
W is defined, using the Matlab syntax for functions, as W = diag(x}_,);
then the solution xj is computed as in (3.7). After some iterations of the
algorithm we have x; | ~ X; and consequentially the objective minimized
at each step becomes

Wi = Y () s

i=1,(2i)x—170 k=1 i=1

that corresponds to minimize the £2~?P-norm. Since we said that small entries
will go to zero when they are elevated by a power between 0 and 1 we need
to require that 0 < 2—2p < 1 which brings to the constrain 0.5 < p < 1. The
convergence of the algorithms to a sparse solution is proven in [8], we only
underline that in general there are many sparse solutions for system (3.4)
and the one obtained through FOCUSS strongly depends from the choice of
the starting solution xy. Given the space R", one has to think that all the
sparse solutions of (3.4) are points of this space which are basins of attraction
of the algorithm, therefore the algorithm will automatically converge to the
sparse solution which basin of attraction contains xq.

The first version of FOCUSS, the one which is also presented in [8], is reported
in Algorithm 1.
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3.3.1 How to adapt FOCUSS to be an efficient cubature
method

FOCUSS, as it is provided in Algorithm 1, is not optimal for our propose
since:

e theoretically, most of the entries of x; asymptotically converge to zero
but never reach it, cause we work in finite precision arithmetic;

e nothing ensure that, even taking an initial solution with positive entries,
the entries remain positive for the final solution;

e A can be ill-conditioned, therefore the algorithm can be unstable due
to the solution of the associated linear system of (AAT)~!.

The first problem can be easily overcome approximating to zero the entries
of the solution that are smaller than a prescribed tolerance. For the second
problem, since FOCUSS is based on the repeated application of linear con-
tinuous operators, we can introduce the dependence from a pseudo-time 7,
and we can formulate FOCUSS as an algorithm which discretize the ordinary
differential (ODE) equation

d
d—j = F(x,7) (3.8)
whose discrete version is
A
A—X — WWAT(AWWAT)"'b — x. (3.9)
-

Note that taking A7 = 1 we recover the standard version of FOCUSS. In
order to keep all the entries positive, we can use a method to solve ODE
which is able to adapt the discrete step A7 to not obtain negative entries in
the solution, e.g. ode23 or ode45 of Matlab.

Another approach to enforce positiveness of the entries of the solution is
based on the under relaxation. Indeed, given the solution of step k, if it has
negative entries while the solution at step £ — 1 has not, we can impose

Xp = axy + (1 — a)xp_1; (3.10)
where « is such that the largest negative entry j of x; becomes zero, i.e.

P ) W (3.11)

(i) — (¥)k-1
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This is repeated until all the entries of x; are non-negative.

Note that, since (z;)z_1 is negative, we speak of under-relaxation cause it
holds that 0 < a < 1; moreover, the new x; defined by (3.10) is a linear
combination of two vector solutions of (3.4), and therefore it is still a solution
of the same system.

We decided to use the under-relaxation on FOCUSS in the following way:
first we run the version without constrain on the non-negativeness of the
weights, then, if the final solution x has some negative entries, we run again
the algorithm but with a version where is implemented the under-relaxation.
We do not run directly the "under-relaxation FOCUSS" for two reasons: (4)
if at step k an entry is negative, it does not mean that the final values of the
entry will be negative, (i7) to force an entry to be zero from one side ensures
the non-negativeness of the weights at each step of the algorithm, but from
the other side, it makes us lose the bias information of the matrix A when
we initialize with an uniform value in all the entries of the initial solution.
We explain the meaning of this last observation at the end of this subsection.
For the third problem two solutions are already provided in [8], in particular
the one regarding the Tikhonov Regularization is always implemented in our
versions of FOCUSS. It consists in replacing problem (3.6) with the following
one

min |||Ax — b||% + A HW_IXHZ} , (3.12)

x€Rn

where A is the regularization parameter that has to be chosen before solving
(3.12). Basically, setting in a proper way A, we decide if we prefer to integrate
well the family of functions chosen or to have a quadrature rule with a greater
number of zero entries. Indeed, with a high value of A, it will be better for
the objective of our minimization to have a solution with more zero entries.
Problem (3.12) is solved in the same way done by the first version of FOCUSS
and the system to determine iteratively is

Wlx = AL (A AL + \I)7b, 3.13
w w

where Ay, = AW. Now the good conditioning of the system that has to be
solved is enforced by the addition of the term AL

The Tikhonov Regularization will be used for a comparison with the LASSO
algorithm of Matlab that aims to minimize an object as (3.12), with the only
difference in the term multiplying A that in LASSO is replaced with the ¢!-
norm of x.

Here we propose two other approaches which demonstrated to work well in
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our test problems. This approaches are related with the methods described in
Section 1.5 for the construction of a reduced base. Matrix A is ill-conditioned
when some of its rows are almost collinear, this means that we don’t need of
all the rows of the matrix and therefore the strategies presented in Section
1.5 can be useful to find a base which generates the space containing all the
rows. Once the base has been found we can build a new matrix which will
be well conditioned.

The first approach is related with the POD method since it involves the
use of the orthogonal matrix U, coming from a truncated singular values
decomposition. The difference with the POD is that now we do not directly
take U as the matrix containing our base but we use it as a preconditioner
for system (3.4); this will also provide a significant reduction in the number
of rows of A.

The other approach is based on a reduction of the total number of rows of A
selecting the ones which linear combinations are able to well approximate the
other rows; this selection is performed through a greedy algorithm. At each
step we put the selected rows in the new matrix A and then we orthogonalize
it to get ®, whose condition number will be equal 1.

Last modification made on Algorithm 1 comes from this reflection: given two
columns of matrix A, ¢; and ¢, such that ¢; = fcy with § >> 1, they are
clearly linear dependent but cy has more probability to be chosen (i.e. to
be related with a not nil entry) since the associated entries of the vector of
weights has to be greater than the one associated to c;. If one wishes not
giving any priority preference to one column over the others which are linear
dependent from it, some operations are necessary. There are two ways to
achieve this result: (i) we scale the columns of A in order to keep as uniform
as possible the range of values of the entries of each column or (i) we choose
an initial solution xq such that value of each entry x; is inversely proportional
to the norm of the corresponding A columns. Clearly, the choose of one of
the two approach exclude the use of the other since if we rescale the values of
the columns we just need to take an xy with an uniform value of the entries
and if we choose the initial solution according to the values of the columns,
rescaling these columns will bring back to the problem we highlighted above.
For the first strategy we follow the approach used in [14| while for the second
one we refer to [8]. Note that the scaling is not a mandatory process, indeed
we can interpret the fact that some columns have larger entries than other
ones as a kind of "a priori information" carried by the matrix that we can
catch choosing an initial solution which has the same value in all the entries.
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Algorithm 2 CONTINUQUS FOCUSS
Input: A, b, zg, p, A, I, tol

Output: z

n < size(A4, 2)

S(i) = 1/(norm(A(:,4))yv/n), i=1,..,n

S <+ diag(9)

A<+ AS

tspan<— [0 inf]

options=odeset(‘RelTol’, 1072, ‘AbsTol’, tol, ‘NonNegative’, ‘vector’,
‘Events’, Q(¢t, z) myEventsFen(t, z, A, b, A, p, I, tol))’

[t, X] =0de23(Q(t, x) odefun(t,xz,A,b,\,p),tspan,x0,0ptions);
8: x + SX(end,:)"

9: forv=1t%ton do
10: if |z(d)| <tol'max|z| then

n

11: z(i) < 0
12:  end if
13: end for

This topic concerning the scaling is more important than what it seems.
Indeed, the result of a scaling operation changes the basin of attraction of
the sparse solution of the system and therefore an initialization from the
same x, can lead to two different final solutions if once we apply a scaling
and the other time no. We only give a general idea about the influence of
the scaling, enough to understand some choices done in our applications; if
one wants to go deeply on this topic it is strongly recommended to read the
section about the basin of attraction in [8].

Taking into account some of the adjustments we have described, Algorithm
2 provides the continuum version of FOCUSS. Note that the event function
myEventsFcn is implemented exactly as odefun with the addition of the
conditions to stop the computation of ode23 when a maximum values of ¢
is reached or when the changes in the solution are lower than a prescribed
tolerance.
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Algorithm 3 ODEFUN
Input: t x A, b, p, A
Output: f

Tp—1 < T

[m, n] < size(A)

xy < zeros(n, 1)

L + Xspeye(m)

wi — ()1, i=1,...,n
ind< find(w?)

w <— w(ind)

A« A(:,ind)
(Adiag(w)AT + L)y = b = y (Solve)
ri(ind) = wATy
= o —wp

— =
- O

3.3.2 On the Offline number of computational opera-
tions of FOCUSS

The principal computational effort of each iteration of FOCUSS is given by
the matrix multiplication Ay A, where we remember Ay, € R™". Conse-
quentially the operation has a cost of O(m?n) arithmetic computation. We
should multiply this cost for the total number of iterations k. necessary for
the convergence of the algorithm, but since in each iteration we delete the
rows of the matrix Ay, associated with the components of x already con-
verged to zero, the final total number of operations it is expected to be less
than O(k.m?n).

We point that the number of operations involved in the SIMPLEX algorithm
to solve a linear programming problem is of the same order of the one of
FOCUSS. Indeed, it requires in each iteration i to compute B7!N, with
B! € R™™ and N, € R™*",

3.4 Polynomial test case

For this test problem we take as F a set of polynomial functions with the same
degree, defined over the domain [—1, 1]. Note that choosing this interval is
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not restrictive since once we know a quadrature rule over [—1, 1] we can use
it for every generic interval [a, b], indeed

b b—a ' [b—a a+b
/Gf(x)dx— 5 /_1f< 5 T+ 5 )dx%

N
b—a b—a a+b
~ ) . : .14
5 E wlf< 5 T+ 5 ), (3.14)

=1

and therefore the relation of nodes and weights with the ones over the interval
[—1, 1] is

b— b— b

The exact value of (3.1) is calculable by the use of a Gauss-Legendre (GL)
quadrature rule, indeed if we choose a rule of this type involving ¢t points we
are able to integrate exactly every polynomial function with degree d less
or equal 2t — 1. Taking n points where we evaluate each polynomial of F,
which total number we remember to be m with m < n, we obtain the system
(3.4) where the vector of the exact integrals b is computed using the Gauss-
Legendre quadrature rule. In particular, ¢ can be taken such that ¢ < m and
consequentially one sparse solution of (3.4), assuming to evaluate the poly-
nomial also in the Gauss-Legendre points, is given by the Gauss-Legendre
quadrature rule.

3.4.1 FOCUSS applied on the polynomial test case

In this subsection we show the results obtained with some of the different ver-
sions of our algorithm. For now, we consider ¢t = 10 Gau